Combined ligand field and density functional theory analysis of the magnetic anisotropy in oligonuclear complexes based on Fe(III)-CN-M(II) exchange-coupled pairs.

نویسندگان

  • Mihail Atanasov
  • Peter Comba
  • Claude A Daul
چکیده

Magnetic anisotropy in cyanide-bridged single-molecule magnets (SMMs) with Fe(III)-CN-M(II) (M = Cu, Ni) exchange-coupled pairs was analyzed using a density functional theory (DFT)-based ligand field model. A pronounced magnetic anisotropy due to exchange was found for linear Fe(III)-CN-M(II) units with fourfold symmetry. This results from spin-orbit coupling of the [Fe(III)(CN)6](3-) unit and was found to be enhanced by a tetragonal field, leading to a (2)E g ground state for Fe(III). In contrast, a trigonal field (e.g., due to tau 2g Jahn-Teller angular distortions) led to a reduction of the magnetic anisotropy. A large enhancement of the anisotropy was found for the Fe(III)-CN-Ni(II) exchange pair if anisotropic exchange combined with a negative zero-field splitting energy of the S = 1 ground state of Ni(II) in tetragonally compressed octahedra, while cancellation of the two anisotropic contributions was predicted for tetragonal elongations. A recently developed DFT approach to Jahn-Teller activity in low-spin hexacyanometalates was used to address the influence of dynamic Jahn-Teller coupling on the magnetic anisotropy. Spin Hamiltonian parameters derived for linear Fe-M subunits were combined using a vector-coupling scheme to yield the spin Hamiltonian for the entire spin cluster. The magnetic properties of published oligonuclear transition-metal complexes with ferromagnetic ground states are discussed qualitatively, and predictive concepts for a systematic search of cyanide-based SMM materials are presented.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anti-tumor activity of Fe (III), Co(II) and Pd(II) complexes of N3-{phenyl [(4-pyridylcarbonyl)amino]methyl}

An anti-tumor compound as N3-{phenyl [(4-pyridylcarbonyl) amino] methyl} weresynthesized and identified (NPPA). Fe (III), Co(II) and Pd(II) metal complexes of this ligand preparedby reaction of chloride salt of Fe (III), Co(II) and Pd(II) with NPPA in dry acetonitrile. Identification andCharacterization of the ligand was performed by FT-IR, 1H-NMR spectroscopy and elemental an...

متن کامل

Magnetic anisotropy in the Fe(II)Fe(III) bimetallic oxalates

Bimetallic oxalates are layered molecule-based magnets with transition metals M II and M III coupled by oxalate molecules ox=C2O4 in an open honeycomb structure. Among the most interesting molecule-based magnets, Fe II Fe III bimetallic compounds with spins S=2 and S =5 /2 ferrimagnetically order at a transition temperature Tc that ranges from 30 to 48 K, depending on the organic cation between...

متن کامل

A Density Functional Theory Investigation of d8 Transition Metal(II) (Ni, Pd, Pt) Chloride Complexes of Some Vic-dioximes Derivatives

Herein, a theoretical study on the stability of some vic-dioxime complexes of Ni(II), Pd(II) and Pt(II) in gas and aqueous phases is reported. The DFT/M06/SDD and DFT/M06/6-31G+(d,p) levels of theory were adopted for the metal ions and for every other element respectively. Structural analyses of investigated complexes have revealed square planar geometries stabilized by two O–H⋯Cl hydrogen bond...

متن کامل

Switching from antiferromagnetic to ferromagnetic coupling in heptanuclear [M(t)6M(c)](n+) complexes by going from an achiral to a chiral triplesalen ligand.

The chiral triplesalen ligand H6chand(RR) has been used to synthesize the chiral heptanuclear complexes [{(chand(RR))Mn(III)3}2{Fe(II)(CN)6}](ClO4)2 ((RR)[Mn(III)6Fe(II)](ClO4)2) and [{(chand(RR))Fe(III)3}2{Fe(II)(CN)6}](ClO4)2 ((RR)[Fe(III)6Fe(II)](ClO4)2), which have been characterized by single-crystal X-ray diffraction, mass spectrometry, elemental analysis, FT-IR, Mössbauer, and UV-vis spe...

متن کامل

DFT-based studies on the Jahn-Teller effect in 3d hexacyanometalates with orbitally degenerate ground states.

The topology of the ground-state potential energy surface of M(CN)(6) with orbitally degenerate (2)T(2g) (M = Ti(III) (t(2g)(1)), Fe(III) and Mn(II) (both low-spin t(2g)(5))) and (3)T(1g) ground states (M = V(III) (t(2g)(2)), Mn(III) and Cr(II) (both low-spin t(2g)(4))) has been studied with linear and quadratic Jahn-Teller coupling models in the five-dimensional space of the epsilon(g) and tau...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Inorganic chemistry

دوره 47 7  شماره 

صفحات  -

تاریخ انتشار 2008